\'1 Grundlagen.- 1.1 Die Mathematik und ihre Sprache. 1.2 Junktoren. 1.3 Quantoren. 1.4 Beweise. 1.5 Menge und Element. 1.6 Mengenoperationen. 1.7 Relationen. 1.8 Funktionen. 1.9 Äquivalenzrelationen. 1.10 Partielle und lineare Ordnungen. 1.11 Existenz und algorithmische Berechenbarkeit. 1.12 Strukturen und strukturerhaltende Abbildungen.- 2 Zahlen.- 2.1 Natürliche Zahlen. 2.2 Ganze und rationale Zahlen. 2.3 Reelle Zahlen. 2.4 Komplexe Zahlen. 2.5 Quaternionen. 2.6 b -adische Darstellungen. 2.7 Irrationale Zahlen. 2.8 Algebraische und transzendente Zahlen. 2.9 Die Zahlen pi und e. 2.10 Infinitesimale Größen. 2.11 p -adische Zahlen. 2.12 Zufallszahlen.- 3 Zahlentheorie.- 3.1 Teilbarkeit. 3.2 Primzahlen und der Fundamentalsatz der Arithmetik. 3.3 Kongruenzen. 3.4 Einfache Primzahltests. 3.5 Das RSA-Verfahren. 3.6 Die Verteilung der Primzahlen. 3.7 Quadratische Reste. 3.8 Kettenbrüche. 3.9 Rationale Approximationen algebraischer Zahlen; Liouvillesche Zahlen. 3.10 Diophantische Gleichungen. 3.11 Elliptische Kurven. 3.12 Zahlkörper .- 4 Diskrete Mathematik.- 4.1 Kombinatorisches Zählen. 4.2 Graphen. 4.3 Euler-Züge. 4.4 Hamilton-Kreise und das P NP-Problem. 4.5 Bäume. 4.6 Färbungen und der Satz von Ramsey. 4.7 Bipartite Graphen. 4.8 Matroide. 4.9 Netzwerke und Flüsse. 4.10 Kürzeste Wege. 4.11 Transitivierung von Relationen. 4.12 Planare Graphen und Minoren.- 5 Lineare Algebra.- 5.1 Vektorräume. 5.2 Lineare Unabhängigkeit und Dimension. 5.3 Lineare Abbildungen und Matrizen. 5.4 Lineare Gleichungssysteme. 5.5 Determinanten. 5.6 Euklidische und unitäre Vektorräume. 5.7 Normierte Vektorräume. 5.8 Orthogonalität. 5.9 Dualität. 5.10 Eigenwerte und Eigenvektoren. 5.11 Diagonalisierung. 5.12 Singulärwertzerlegung und Jordansche Normalform.- 6 Algebra.- 6.1 Gruppen. 6.2 Ringe. 6.3 Körper. 6.4 Normalteiler und Faktorgruppen. 6.5 Ideale und Teilbarkeit in Ringen. 6.6 Endlich erzeugte abelsche Gruppen. 6.7 Quotientenkörper. 6.8 Polynome.\n6.9 Körpererweiterungen. 6.10 Konstruktionen mit Zirkel und Lineal. 6.11 Galoistheorie. 6.12 Lösbarkeit polynomialer Gleichungen durch Radikale.- 7 Elementare Analysis.- 7.1 Folgen und Grenzwerte. 7.2 Unendliche Reihen und Produkte. 7.3 Stetige Funktionen. 7.4 Exponentialfunktion, Logarithmus und trigonometrische Funktionen. 7.5 Differenzierbare Funktionen. 7.6 Das Riemannsche Integral. 7.7 Der Hauptsatz der Differential- und Integralrechnung. 7.8 Vertauschung von Grenzprozessen. 7.9 Taylorentwicklung und Potenzreihen. 7.10 Fourierreihen. 7.11 Fouriertransformation 7.12 Kurven im R d .- 8 Höhere Analysis.- 8.1 Metrische und normierte Räume. 8.2 Partielle und totale Differenzierbarkeit. 8.3 Mittelwertsatz, Taylorformel und lokale Extrema. 8.4 Der Satz von Picard-Lindelöf. 8.5 Stabilität von Gleichgewichtspunkten. 8.6 Das Lebesguesche Maß. 8.7 Das Lebesguesche Integral. 8.8 Der Gaußsche Integralsatz. 8.9 Holomorphe Funktionen. 8.10 Der Residuensatz. 8.11 Fixpunktsätze. 8.12 Der Bairesche Kategoriensatz.- 9 Topologie und Geometrie.- 9.1 Topologische Räume. 9.2 Stetige Abbildungen. 9.3 Beschreibung von Topologien. 9.4 Produkträume und Quotientenräume. 9.5 Zusammenhang. 9.6 Trennung. 9.7 Kompaktheit. 9.8 Flächen im R 3 . 9.9 Mannigfaltigkeiten. 9.10 Homotopie 9.11 Homologie 9.12 Euklidische und nichteuklidische Geometrie.- 10 Numerik.- 10.1 Die Kondition. 10.2 Gleitkomma-Arithmetik. 10.3 Numerische Stabilität. 10.4 Das Gaußsche Eliminationsverfahren. 10.5 Die Methode der kleinsten Quadrate. 10.6 Eigenwertprobleme. 10.7 Polynominterpolation. 10.8 Die schnelle Fouriertransformation. 10.9 Numerische Integration und Summation. 10.10 Die Gaußschen Quadraturverfahren. 10.11 Runge-Kutta-Verfahren. 10.12 Das Newton-Verfahren.- 11 Stochastik.- 11.1 Wahrscheinlichkeitsräume. 11.2 Zufallsvariable. 11.3 Erwartungswert und Varianz. 11.4 Bedingte Wahrscheinlichkeiten und Unabhängigkeit. 11.5 Null-Eins-Gesetze. 11.6 Das Gesetz der gro
\n Skryť popis- Nakladateľ: Springer, Berlin
- Kód:
- Rok vydania: 2015
- Jazyk: Nemčina
- Väzba: Měkká
- Počet strán: 355
- Šírka balenia: 15.5 cm
- Výška balenia: 23.4 cm
- Hĺbka balenia: 2.1 cm
Recenzie