The authors characterize the non-negative locally finite non-atomic Borel measures $\\mu $ in $\\mathbb R^d$ for which the associated $s$-Riesz transform is bounded in $L^2(\\mu )$ in terms of the Wolff energy. This extends the range of $s$ in which the Mateu-Prat-Verdera characterization of...
prečítať celé
The authors characterize the non-negative locally finite non-atomic Borel measures $\\mu $ in $\\mathbb R^d$ for which the associated $s$-Riesz transform is bounded in $L^2(\\mu )$ in terms of the Wolff energy. This extends the range of $s$ in which the Mateu-Prat-Verdera characterization of measures with bounded $s$-Riesz transform is known.
Skryť popis